Evaluation of Several Two-Step Scoring Functions Based on Linear Interaction Energy, Effective Ligand Size, and Empirical Pair Potentials for Prediction of Protein-Ligand Binding Geometry and Free Energy

نویسندگان

  • Obaidur Rahaman
  • Trilce Estrada
  • Douglas J. Doren
  • Michela Taufer
  • Charles L. Brooks
  • Roger S. Armen
چکیده

The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand efficiencies is most relevant to real-world drug design efforts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

Inclusion of Solvation and Entropy in the Knowledge-Based Scoring Function for Protein-Ligand Interactions

The effects of solvation and entropy play a critical role in determining the binding free energy in protein-ligand interactions. Despite the good balance between speed and accuracy, no current knowledge-based scoring functions account for the effects of solvation and configurational entropy explicitly due to the difficulty in deriving the corresponding pair potentials and the resulting double c...

متن کامل

Supervised Consensus Scoring Methods for Structure-Based Drug Design

Molecular docking is widely used to discovery novel ligands in structure-based drug design (SBDD) [1]. Over the past 15 years, various docking programs have been developed. Generally, flexible docking programs, such as DOCK, AutoDock, FlexX, GOLD and Glide, have the ability to predict protein-ligand complex structures with reasonable accuracy and speed. These docking programs are aimed at predi...

متن کامل

Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.

Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked in...

متن کامل

Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation

The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 51 9  شماره 

صفحات  -

تاریخ انتشار 2011